Design, synthesis and in-vitro biological evaluation of antofine and tylophorine prodrugs as hypoxia-targeted anticancer agents

6/1/2021 Phenanthroindolizidines, such as antofine and tylophorine, are a family of natural alkaloids isolated from different species of Asclepiadaceas. They are characterized by interesting biological activities, such as pronounced cytotoxicity against different human cancerous cell lines, including multidrug-resistant examples. Nonetheless, these derivatives are associated with severe neurotoxicity and loss of in vivo activity due to the highly lipophilic nature of the alkaloids. Here, we describe the development of highly polar prodrugs of antofine and tylophorine as hypoxia-targeted prodrugs. The developed quaternary ammonium salts of phenanthroindolizidines showed high chemical and metabolic stability and are predicted to have no penetration through the blood-brain barrier. The designed prodrugs displayed decreased cytotoxicity when tested under normoxic conditions. However, their cytotoxic activity considerably increased when tested under hypoxic conditions.

Other Researches

8/23/2021

Kirenol: A promising bioactive metabolite from siegesbeckia species: A detailed review

Read More

3/4/2021

Repurposing of Some Natural Product Isolates as SARS-COV-2 Main Protease Inhibitors via In Vitro Cell Free and Cell-Based Antiviral Assessments and Molecular Modeling Approaches

Read More

6/17/2021

Nitric-Oxide-Mediated Vasodilation of Bioactive Compounds Isolated from Hypericum revolutum in Rat Aorta

Read More

7/25/2021

Natural Products of the Fungal Genus Humicola: Diversity, Biological Activity, and Industrial Importance

Read More

5/24/2021

Jojoba oil: An updated comprehensive review on chemistry, pharmaceutical uses, and toxicity

Read More

5/31/2021

Vasodilating effect of Hypericum revolutum (Vahl) (Clusiaceae) methanol extract in rats

Read More

Cookies Policy

This website uses cookies to improve your user experience. By accepting and closing when first visiting the page you consent to our use of cookies