Optimization, in vitro release and toxicity evaluation of novel pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum semi-interpenetrating networks

6/29/2021 Background: In recent era, pH sensitive polymeric carriers that combines the materials engineering and medicine is gaining researcher's attention as they maximizes drug concentration at site of absorption and reduces side effects for e.g. orally administered cetirizine HCl (CTZ HCl) upsets the stomach and furthermore shows high intestinal absorption. Thus, development of pH sensitive hydrogels with sufficient mechanical strength will be good candidate to address this issue.

Methods: Here, we developed pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum (IA-g-poly(AM)/sterculia gum) semi-interpenetrating network (semi-IPN) by free radical polymerization technique for intestinal delivery of CTZ HCL.

Results: Optimized formulation (I5) with 6% w/w IA showed negligible swelling at pH 1.2, and maximum swelling at pH 7.4. Solid state characterization of optimized formulation showed successful development of semi-IPN structure and incorporation of drug without any noticeable drug-carrier interaction. In vitro release study showed biphasic pH dependent release of CTZ HCl, where initial burst release was observed at acidic pH followed by sustained release at basic pH. Acute oral toxicity and histopathological studies confirmed the non-toxic nature of IA-g-poly(AM)/sterculia gum.

Conclusion: Conclusively, developed biocompatible semi-IPN hydrogels with sufficient pH sensitivity and mechanical strength could serve as a potential carrier for intestinal delivery of CTZ HCL to maximize its absorption and reduce side effects.

Other Researches

8/23/2021

Kirenol: A promising bioactive metabolite from siegesbeckia species: A detailed review

Read More

3/4/2021

Repurposing of Some Natural Product Isolates as SARS-COV-2 Main Protease Inhibitors via In Vitro Cell Free and Cell-Based Antiviral Assessments and Molecular Modeling Approaches

Read More

6/17/2021

Nitric-Oxide-Mediated Vasodilation of Bioactive Compounds Isolated from Hypericum revolutum in Rat Aorta

Read More

7/25/2021

Natural Products of the Fungal Genus Humicola: Diversity, Biological Activity, and Industrial Importance

Read More

5/24/2021

Jojoba oil: An updated comprehensive review on chemistry, pharmaceutical uses, and toxicity

Read More

5/31/2021

Vasodilating effect of Hypericum revolutum (Vahl) (Clusiaceae) methanol extract in rats

Read More

Cookies Policy

This website uses cookies to improve your user experience. By accepting and closing when first visiting the page you consent to our use of cookies